Total synthesis of decarestrictine I and botryolide B via RCM protocol[†]

Palakodety Radha Krishna* and T. Jagannadha Rao

Received 23rd March 2010, Accepted 27th May 2010 First published as an Advance Article on the web 8th June 2010 DOI: 10.1039/c004556j

A convergent stereoselective total synthesis of decarestrictine I (1) and botryolide B (1a) invoking a common synthetic strategy is reported. The key steps are: ring-closing metathesis of epoxy dienoic esters obtained through the Yamaguchi esterification of their respective intermediates to furnish the respective Z-macrocycles (2 and 2a) which were further extrapolated to their respective targets.

Decarestrictines represent a family of novel 10-membered lactones produced by different strains of Penicillium.1 So far, six components of the family of decarestrictines have been identified. The identical carbon skeleton that forms a 10-membered lactone ring, which varies in the oxygen patterns ranging from carbon 3 to 7, and the presence of one *E*-configured double bond located either at C-4 or at C-5 are the salient structural features of this class of compounds. The decarestrictines show interesting activity in cell line tests with HEP-G2 liver cells^{2,3} due to an inhibitory effect on cholesterol biosynthesis. Amongst this family, decarestrictine I (1) has the most unique structural features: a 10-membered lactone fused with a dihydrofuran framework and a Z-configured double bond to accommodate the bicyclic structure. Excepting a patent reference⁴ no synthesis is reported so far. As a part of our ongoing program on the total synthesis of bioactive 10-membered macrolides,⁵ we accomplished the total synthesis of decarestrictine D earlier.5a

In continuation, we became interested in the synthesis of **1** primarily due to its impressive structural features and report the same herein through a tandem RCM/intramolecular epoxide-ring opening reaction sequence to access the bicyclic framework en route to **1**. Alongside, a related stratagem involving Yamaguchi esterification followed by the RCM/deprotection set furnished yet another target **1a**. Interestingly, botryolides are biosynthetically related new decarestrictine analogs isolated from *Botryotrichum* sp. (NRRL).⁶

We envisioned a convergent strategy *via* the assembly of latestage intermediates **4** and **5** (**4a** and **5**, Scheme 1) that are conveniently accessed from the inexpensive starting materials like 1,4-butanediol and propylene oxide. While the application of Jacobsen hydrolytic kinetic resolution and Sharpless asymmetric epoxidation helped us garner the stereogenic centers of the target molecules; Yamaguchi esterification, RCM and intramolecular epoxide ring-opening reaction are the other key steps adopted to accomplish the total synthesis of **1**. A similar strategy was planned for the first total synthesis of **1a**.

Scheme 1 Retrosynthesis for decarestrictine I and botryolide B.

The RCM of substrates possessing diversely protected chiral centers adjacent to the reacting olefins is still a challenging proposition, herein substrates **3** and **3a** were chosen as RCM precursors. Most often than not, such dienes result in products as *Z*-isomers either predominantly or exclusively.⁷ Bearing this in mind, the synthesis was planned to derive the *Z*-macrocycles **2** and **2a** (Scheme 3 and 4). PMB-deprotection of **2** predictably led to the dihydrofuran ring (**1**) *via* the intramolecular epoxide ring-opening reaction. However, **2a** under the same reaction conditions afforded **1a**. A 6,7- β -epoxide was chosen since all the members of decarestrictine family followed a common biogenetic pathway and the C7 mostly bears a β -hydroxy stereogenic center.

Accordingly, the synthesis of 1 starts with the known silyl derivative of homoallyl alcohol. Thus, the olefin of homoallyl alcohol derivative was subjected to epoxidation with *m*-chloroperbenzoic acid. Then the racemic epoxide **6** (Scheme 2) was subjected to Jacobsen's hydrolytic kinetic resolution to afford the optically enriched epoxide **7**. Epoxide **7** on ring-opening reaction with n-butyl lithium and TMSI afforded allylic alcohol **8**⁸ (70%). The hydroxyl group in **8** was protected as its PMB ether (PMBBr–NaH–THF/0 °C–rt) to afford **9** (84%), the TPS group in **9** was deprotected with TBAF in THF to afford primary alcohol **10** (91%) which was converted to acid **4** by a two step process; firstly to an aldehyde on Swern oxidation and then on perchlorite oxidation (NaClO₂–NaH₂PO₄·2H₂O–*t*-BuOH–2-methyl-2-butene) to the acid **4** (80% over two steps).

Another intermediate, epoxy alkene **5** (Scheme 2) was synthesized from the known propargylic alcohol **11**.⁹ Compound **11** was converted to *cis*-allylic alcohol **12** (67%) *via* partial reduction with Ni(OAc)₂·4H₂O–NaBH₄ in ethanol¹⁰ under H₂ atmosphere. Allylic alcohol **12** on Sharpless asymmetric epoxidation [(–)-DIPT–Ti(O'Pr)₄–cumenehydroperoxide/–20 °C] afforded epoxy alcohol

D-211, Discovery Laboratory, Organic Chemistry Division-III, Indian Institute of Chemical Technology, Hyderabad 500 607, India. E-mail: prkgenius@iict.res.in; Fax: +91-40-27160387

[†] Electronic supplementary information (ESI) available: Experimental procedures and spectral data. See DOI: 10.1039/c004556j

Scheme 2 Reagents and conditions: a) (S,S)-(salen) Co^{III}(OAC), 0.55 eq. H₂O, rt, 18 h; (b) *n*-BuLi, Me₃S⁺L⁻, THF, -20 °C-rt, 3 h, 70%; c) PMBBr, NaH, THF, 0 °C-rt, 12 h (84%), d) TBAF, THF, 0 °C-rt, 2 h (91%); e) i) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 1 h, ii) NaClO₂, NaH₂PO₄·2H₂O, *t*-BuOH–2-methyl-2-butene (3:1), 0 °C-rt, 12 h (80% over two steps); f) ref. 9; g) Ni(OAc)₂·4H₂O, NaBH₄, H₂, EtOH, rt, 2 h (67%); h) (–)-DIPT, Ti(O'Pr)₄, cumenehydroperoxide, CH₂Cl₂, -20 °C, 12h (93%); i) i) (COCl₂), DMSO, Et₃N, CH₂Cl₂, -78 °C, 1 h, ii) Ph₃PCH₃+ Γ , KO'Bu, THF, 0 °C, 8 h (62%); j) DDQ, CH₂Cl₂-H₂O (19:1), rt, 1 h, (90%).

13¹¹ (93%), which on Swern oxidation followed by 1C Wittig olefination ($Ph_3PCH_3^+I^--KO^tBu-THF$) afforded epoxy alkene 14 (80% over two steps). The PMB group in 14 was deprotected with DDQ in $CH_2Cl_2-H_2O$ to obtain alcohol intermediate 5 (90%).

The acid 4 (Scheme 3) on coupling with 5 under Yamaguchi conditions (2,4,6-trichlorobenzoyl chloride–Et₃N–THF then DMAP–toluene) afforded the dienoic ester 3^{12} (82%). Compound 3 underwent RCM smoothly upon using 10 mol% of Grubbs' II generation catalyst at reflux in CH₂Cl₂ to provide the desired macrolactone (*Z*)- 2^7 (~63%) as the major product. Next, lactone 2 on treatment with DDQ in CH₂Cl₂ underwent PMBdeprotection and a spontaneous second ring-closure to afford the

Scheme 3 *Reagents and conditions*: a) 2,4,6-trichlorobenzoyl chloride, Et₃N, THF, 0 °C–rt, 4 h, then DMAP, **4**, toluene, 0 °C–rt, 12 h (82%); b) Grubbs' II generation catalyst, CH_2Cl_2 , reflux, 12 h (63%); c) DDQ, $CH_2Cl_2-H_2O$, 0 °C–rt, 1 h, (69%).

dihydrofuran ring containing decarestrictine I^{13} (1, 69%), evidently through the intramolecular epoxide ring-opening reaction. The spectral data of synthetic 1 was matched with the reported data and found in agreement.⁴

To check whether only anti-configured 6,7-epoxide and 3-OPMB functional groups are conveniently positioned to undergo the dihydrofuran formation during the deprotection step and not otherwise, an independent study was undertaken. Accordingly, enantiomeric acid 4a was synthesized using a related strategy (Scheme 4). Acid 4a on Yamaguchi esterification with epoxy alcohol 5 gave ester 3a in comparable yields. Later 3a on RCM under similar reaction conditions furnished 2a in comparable yields. Subsequently, following an analogous PMB-deprotection **2a** (DDO-CH₂Cl₂-H₂O/rt) however did not result in the bicyclic system but rather furnished botryolide B (1a). Thus, the logic that spatial proximity plays an important role in facilitating an intramolecular epoxide ring-opening reaction holds good for 2 and a simple PMB-deprotection occurred in the case of lactone 2a to afford botryolide B (1a, 75%) as the lone product. Compound 2a was identified from its spectral analysis.¹⁴

Synthesis of acid 4a

Scheme 4 Reagents and conditions: a) (R,R)-(salen) Co^{III}(OAc), 0.55 eq. H₂O, rt, 18 h; (b) *n*-BuLi, Me₃S⁺I⁻, THF, -20 °C-rt, 3 h, 85%; c) PMBBr, NaH, THF, 0 °C-rt, 12 h (70%), d) TBAF, THF, 0 °C-rt, 2 h (80%); e) i) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 1 h, ii) NaClO₂, NaH₂PO₄·2H₂O, *t*-BuOH-2-methyl-2-butene (3 : 1), 0 °C-rt, 12 h (80% over two steps); f) 2,4,6-trichlorobenzoyl chloride, Et₃N, THF, 0 °C-rt, 4 h, then DMAP, 4, toluene, 0 °C-rt, 12 h (85%); g) Grubbs' II generation catalyst, CH₂Cl₂, reflux, 12 h (75%); h) DDQ, CH₂Cl₂-H₂O, 0 °C-rt, 1 h, (72%).

Both the products (1 and 1a) were characterized by their spectral data. For instance, the Z-geometry of the double bond(s) was assigned based on the coupling constants of the olefinic protons (J = 1.8, 8.3, 11.7, and 1.5, 7.8, 10.9 Hz). Further, the structures of 1 and 1a and their absolute stereochemistry were unambiguously established by comparing the spectral analysis.¹⁴

Incidentally, some of the other decarestrictines synthesized involving RCM are listed,¹⁵ though the strategy to access the respective intermediates differ.

Conclusions

In conclusion, we described the stereoselective total synthesis of decarestrictine I (1) and botryolide B (1a) *via* an RCM of the respective dienoic esters possessing sensitive chiral functional groups on either side of the bisolefins. While macrolide 2 endowed with harmoniously positioned epoxide and –OPMB groups underwent a facile second cyclization to furnish 1 during the deprotection step *via* an intramolecular ring-opening reaction; the *syn*-diastereomer **2a** afforded **1a** under similar reaction conditions. The syntheses reported herein established the relative and absolute stereochemistry of both the targets.

Acknowledgements

One of the authors (TJ) thanks the CSIR, New Delhi for the financial support in the form of the fellowship.

Notes and references

- (a) S. Grabley, E. Granzer, K. Hütter, D. Ludwig, M. Mayer, R. Thiericke, G. Till, J. Wink, S. Philipps and A. Zeeck, J. Antibiot., 1992, 45, 56–65; (b) A. Göhrt, A. Zeeck, K. Hütter, R. Kirsch, H. Kluge and R. Thiericke, J. Antibiot., 1992, 45, 66–73; (c) A. W. Ayer, M. Sun, L. M. Browne, L. S. Brinen and J. Clardy, J. Nat. Prod., 1992, 55, 649–653.
 N. R. Lwitt and K. Budoi. Picakary, J. 1980, 262, 080, 092
- 2 N. B. Javitt and K. Budai, *Biochem. J.*, 1989, 262, 989–992.

- 3 M. Mayer, R. Thiericke and A. G. Hoechst, J. Antibiot., 1993, 46, 1372–1380.
- 4 S. Philipps, M. Mayer, A. Göhrt, E. Granzer, P. Hammann, R. Kirsch and R. Thiericke, EP, 0497300A12, 1992.
- 5 (a) P. Radha Krishna and P. V. Narasimha Reddy, *Tetrahedron Lett.*, 2006, **47**, 7473–7476; (b) P. Radha Krishna and M. Narsingam, *Synthesis*, 2007, 3627–3634; (c) P. Radha Krishna and A. Sreeshailam, *Synlett*, 2008, 2795–2798.
- 6 A. A. Sy, D. C. Swenson, J. B. Gloer and D. T. Wicklow, J. Nat. Prod., 2008, 71, 415–419.
- 7 (a) D. K. Mohapatra, D. K. Ramesh, M. A. Giardello, M. S. Chorghade, M. K. Gurjar and R. H. Grubbs, *Tetrahedron Lett.*, 2007, 48, 2621–2625; (b) C. V. Ramana, T. P. Khaladkar, S. Chatterjee and M. K. Gurjar, *J. Org. Chem.*, 2008, 73, 3817–3822; (c) D. K. Mohapatra, D. Uttam, P. Ramesh Naidu and J. S. Yadav, *Synlett*, 2009, 2129–2132; (d) R. H. Grubbs, S. J. Miller and G. C. Fu, *Acc. Chem. Res.*, 1995, 28, 446–452; (e) A. Deiters and S. F. Martin, *Chem. Rev.*, 2004, 104, 2199–2238.
- 8 P. Radha Krishna and R. Srinivas, *Tetrahedron Lett.*, 2007, 48, 2013–2015.
- 9 G. V. M. Sharma and K. V. Babu, *Tetrahedron: Asymmetry*, 2007, 18, 2175–2184.
- 10 (a) D. Sandrine, P. Jean-Luc and S. Maurice, *Synthesis*, 1998, 1015– 1018; (b) C. A. Brown and V. K. Ahuja, *J. Org. Chem.*, 1973, 38, 2226–2230.
- 11 K. B. Sharpless, H. C. Kolb and M. S. VanNieuwenhze, *Chem. Rev.*, 1994, 94, 2483–2547.
- 12 J. Inanaga, K. Hirata, H. Saeki, T. Katsuki and M. Yamaguchi, Bull. Chem. Soc. Jpn., 1979, 52, 1989–1993.
- 13 J. M. Peter and L. H. Ronald, J. Am. Chem. Soc., 2003, 125, 1712–1713.
- 14 For experimental procedures and spectral data, see *Supplementary* Information.
- 15 (a) J. S. Yadav, K. A. Lakshmi, N. M. Reddy, A. R. Prasad and B. V. Subba Reddy, *Tetrahedron*, 2010, **66**, 334–338; (b) P. S. Chowdhury, P. Gupta and P. Kumar, *Tetrahedron Lett.*, 2009, **50**, 7188–7190; (c) P. Gupta and P. Kumar, *Eur. J. Org. Chem.*, 2008, 1195–1202; (d) D. K. Mohapatra, G. Sahoo, D. K. Ramesh, J. S. Rao and G. N. Sastry, *Tetrahedron Lett.*, 2009, **50**, 5636–5639.